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A finite strain theory is developed for anisotropic single crystals undergoing shock loading.
Inelastic deformation may arise from dislocation slip, twinning, or fracture and crack slid-
ing. Internal energy can generally depend on a logarithmic measure of finite elastic strain,
entropy, and an internal variable associated with defect accumulation. A closed form ana-
lytical solution is derived for the planar shock response in the thermoelastic regime, at
axial stresses up to the Hugoniot elastic limit. In the plastic regime, for highly symmetric
orientations and rate independent shear strength, the Rankine–Hugoniot conditions and
constitutive relations can be reduced to a set of algebraic equations that can be solved
for the material response. The theory is applied towards planar shock loading of single
crystals of sapphire, diamond, and quartz. Logarithmic elasticity is demonstrated to be
more accurate (i.e., require fewer higher-order elastic constants) than Lagrangian or Eule-
rian theories for sapphire, diamond, and Z-cut quartz. Results provide new insight into cri-
teria for initiation of twinning, slip, and/or fracture in these materials as well as their
strength degradation when shocked at increasingly higher pressures above the Hugoniot
elastic limit.

Published by Elsevier Ltd.
1. Introduction

The response of solids to shock compression under planar impact has been a subject of intensive study over the past half-
century (McQueen, Marsh, Taylor, Fritz, & Carter, 1970), including numerous advances in experiments, theoretical/analytical
methods, and numerical techniques. Regarding modeling of related phenomena, much effort has centered on development of
the pressure–volume equation-of-state (EOS) applicable for loading regimes or materials (e.g., very high pressures, or isotro-
pic fluids and ductile solids) wherein shear strength and anisotropy are of little or no concern. However, for strong solids–
ceramics, minerals, and some metals and alloys, for example – significant shear strength is retained under impact loading at
moderate to high pressures. This strength can affect the global response of the material in loading conditions pertinent to
ballistic penetration, geologic events, explosions, high-speed vehicular collisions, etc. Microstructure, including grain or con-
stituent orientation and presence of multiple phases, can also significantly affect the shock response (Grady, 1984). In
shocked single crystals of high purity which are the focus of the present work, crystal lattice orientation is the primary
descriptor of initial microstructure, and it affects anisotropic themoelasticity and orientation-dependent inelasticity (e.g.,
slip, twinning, and cleavage fracture).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijengsci.2014.02.016&domain=pdf
http://dx.doi.org/10.1016/j.ijengsci.2014.02.016
mailto:john.d.clayton1.civ@mail.mil
http://dx.doi.org/10.1016/j.ijengsci.2014.02.016
http://www.sciencedirect.com/science/journal/00207225
http://www.elsevier.com/locate/ijengsci


2 J.D. Clayton / International Journal of Engineering Science 79 (2014) 1–20
In Section 2 of this paper, a new finite deformation, anisotropic thermoelastic theory is developed for single crystals, and
is applied to study the shock response of oriented crystals of sapphire (a-Al2O3), diamond (C), and quartz (a-SiO2). These
materials are considered because (i) they exhibit a high Hugoniot Elastic Limit (HEL), enabling assessment of finite strain
effects in their elastic shock response and (ii) ample data on higher-order elastic constants (Graham, 1972; Hankey &
Schuele, 1970; Nielsen, 1986; Thurston, McSkimin, & Andreatch, 1966) and planar shock compression experiments (Graham
& Brooks, 1971; Fowles, 1967; Lang & Gupta, 2010) exist, enabling model development and validation.

In recent prior work (Clayton, 2013), a finite strain theory based on strain measure D ¼ 1
2 ð1� F�1F�TÞ was developed and

compared to usual nonlinear crystal thermoelasticity (Clayton, 2011a; Thurston, 1974; Wallace, 1972) based on the Green
strain E ¼ 1

2 ðF
TF � 1Þ, where F is the deformation gradient. These are respectively referred to as ‘‘Eulerian’’ and ‘‘Lagrangian’’

theories (Nielsen, 1986; Thomsen, 1972), though both strain measures are referred to material coordinates and are thus
admissible in thermodynamic potentials for anisotropic solids [in contrast to the Almansi strain A ¼ 1

2 ð1� F�TF�1Þ, for exam-
ple, used in isotropic nonlinear elasticity]. Eulerian theory demonstrated advantages with regards to describing the compres-
sion and shear reponses of ideal cubic crystals with Cauchy symmetry, and demonstrated greater intrinsic stability (Clayton
& Bliss, 2014) than Lagrangian theory for these conditions. Analytical solutions to the planar shock problem were also de-
rived using both models, with predictions compared for sapphire, diamond, and quartz (Clayton, 2013). Neither model
was definitively superior for describing the shock response of these real anisotropic single crystals, with elastic constants
of up to order three or four necessary in either case. Anisotropic Lagrangian-type nonlinear elastic models of crystals have
been used by other authors in numerical simulations of wave propagation (Winey & Gupta, 2004) and spall (Foulk & Vogler,
2010). Recently, the aforementioned Eulerian theory has been applied towards new nonlinear elastic solutions of boundary
value problems involving discrete lattice defects (Clayton, in press).

In the novel thermoelastic theory developed in the current work, internal energy is a function of entropy and material
logarithmic strain e ¼ ln U, where U is the right stretch in the polar decomposition F ¼ RU ¼ VR, with R the rotation. Elastic
theory based on Hencky’s strain measure ln V has been used to accurately model isotropic solids at moderate-to-large strains
(Anand, 1979), but this Eulerian theory does not apply for anisotropic solids. Regarding the latter, hyperelastic theory based
on e has been considered with regards to derivation of higher-order elastic constants in cubic crystals (Dlu _zewski, 2000), but
such theory has remained, until now, untested for stress states involving both pressure and shear such as uniaxial strain
shock compression. Success of the logarithmic pressure–volume EOS, to which e-based theory degenerates under hydrostatic
loading, has been demonstrated (Poirier & Tarantola, 1998). In Section 2.1, a complete thermodynamically consistent non-
linear thermoelasticity theory incorporating e is derived and presented for the first time. A new analytical solution to the
planar shock problem for solids obeying this constitutive theory is derived in Section 2.2. Application of the solution to sap-
phire, diamond, and quartz follows in Section 2.3, wherein advantages of the proposed logarithmic formulation over existing
Lagrangian and Eulerian thermoelasticity models become clear.

Recently (Srinivasa, 2012), a promising structure for anisotropic hyperelasticity has been developed that involves decom-
position of F into the product of an orthogonal matrix and an upper triangular matrix, with strain energy depending on the
latter. This approach, though not explored in the current paper, demonstrates certain advantages regarding computational
efficiency and physical interpretation relative to models that use a polar decomposition (e.g., logarithmic theory).

In Section 3, the logarithmic theory is extended to address inelastic deformation, wherein the deformation gradient is
split into thermoelastic (FE) and inelastic (FP) parts: F ¼ FEFP (Clayton, 2011a; Teodosiu & Sidoroff, 1976), implying existence
of a stress free intermediate or natural configuration (Rajagopal & Srinivasa, 1998) from which the material exhibits an
instantaneous thermoelastic response. Typical crystal plasticity models of high rate behavior have used the elastic Green
strain measure E ¼ 1

2 ðF
ETFE � 1Þ in their nonlinear elastic stress–strain relations (Clayton, 2005a, 2005b; Luscher, Bronkhorst,

Alleman, & Addessio, 2013; Vogler & Clayton, 2008; Winey & Gupta, 2006). In Section 3.1 of the current work, logarithmic
thermoelastic strain e ¼ ln UE is used as a state variable in the internal energy, where FE ¼ REUE ¼ VERE. Inelastic deforma-
tion FP may result from a host of physical mechanisms in single crystals, including dislocation slip (Clayton, McDowell, &
Bammann, 2004; Teodosiu & Sidoroff, 1976), deformation twinning (Clayton, 2009), pore collapse (Barton, Winter, & Reaugh,
2009; Clayton, 2008), and/or cleavage fracture on preferred planes (Aslan, Cordero, Gaubert, & Forest, 2011; Clayton, 2006).
Thermodynamically consistent elastic–plastic models incorporating logarithmic strain measures have been developed else-
where for isotropic solids (Xiao, Bruhns, & Meyers, 2007); several known previous logarithmic models for anisotropic elas-
tic–plastic crystals (Barton et al., 2009; Clayton & Becker, 2012) have posited constitutive equations for deviatoric stress and
pressure directly (the latter with an EOS), in a way not necessarily consistent with existence of a hyperelastic total energy
potential.

Solution of the planar elastic–plastic shock problem is derived in Section 3.2, wherein a rate independent, but history
dependent, deformation system-level shear strength model is applied in the context of the logarithmic theory. The Ran-
kine–Hugoniot conditions (Germain & Lee, 1973) and constitutive relations yield a set of coupled nonlinear algebraic equa-
tions that can be solved iteratively for the themomechanical state downstream from a plastic shock, with the upstream state
corresponding to the elastic precursor. The analysis extends a prior treatment of isotropic solids (Perrin & Delannoy-Coutris,
1983). Previous analytical solutions for elastic–plastic wave propagation in crystals have been restricted to small strain the-
ory (linear elasticity) and isentropic conditions (Johnson, 1972, 1974; Johnson, Jones, & Michaels, 1970); the present work, in
contrast, incorporates large deformation, nonlinear themoelasticity, and entropy production. In Section 3.3, model predic-
tions are compared with experimental data on sapphire, diamond, and quartz shocked in pure mode directions above the
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HEL, demonstrating accuracy of the model when proper inelastic deformation mechanisms are incorporated for each crystal
type. Conclusions are given in Section 4, and the logarithmic pressure–volume EOS is discussed in the Appendix A.

Notation of continuum physics is used: vectors and tensors are bold, scalars and scalar components are italic, and sum-
mation holds for repeated subscripted indices (Cartesian coordinates). Superscripts T, �1, and �T denote the transpose, in-
verse, and inverse-transpose. Scalar and tensor products obey a � b ¼ aK bK , A : B ¼ AIJBIJ , and ða� bÞIJ ¼ aIbJ .

2. Anisotropic logarithmic thermoelasticity

2.1. Continuum theory

Spatial and referential coordinates are related by the motion x ¼ xðX; tÞ. The deformation gradient F and its determinant
are
F ¼ r0x ðFiJ ¼ @JxiÞ; J ¼ det F ¼ q0

q
> 0: ð2:1Þ
Initial and current mass densities are q0 and q. Let P and r denote first Piola–Kirchhoff and Cauchy stress:
P ¼ JrF�T; PiJ ¼ JrikF�1
Jk ¼

q0

q
rik@kXJ : ð2:2Þ
Let t ¼ _x be particle velocity, where the superposed dot is a material time derivative. Balances of linear and angular momen-
tum in the absence of body force are
r0 � P ¼ q0
_t; @JPiJ ¼ q0€xi; ð2:3Þ

PFT ¼ FPT; PiJFkJ ¼ PkJFiJ: ð2:4Þ
Let W and U denote Helmoltz free energy and internal energy per unit initial volume, and let h and g denote absolute tem-
perature and entropy density; then
U ¼ Wþ hg: ð2:5Þ
For homogeneous thermoelastic solids, in general,
W ¼ W ðF; hÞ; U ¼ U ðF;gÞ: ð2:6Þ
Dependence on F will be replaced later by dependence on a logarithmic strain measure that respects rotational invariance of
the thermodynamic potentials.

The local balance of energy, in the absence of scalar heat sources, is
_U ¼ P : _F �r0 � Q ; _U ¼ PiJ@J _xi � @JQ J ; ð2:7Þ
with Q heat flux in reference coordinates. Local entropy production obeys
_gþr0 � ðQ=hÞP 0; h _gþ @JQ J � ðQ J@JhÞ=h P 0: ð2:8Þ
Using (2.5) and (2.7) in (2.8),
P : _F � g _h� _W� ðQ � r0hÞ=h P 0: ð2:9Þ
Then from the first of (2.6),
ðP � @W=@FÞ : _F � ðgþ @W=@hÞ _h� Q � r0h P 0; ð2:10Þ
from which the standard thermoelastic constitutive equations of hyperelasticity follow:
P ¼ @W=@F; g ¼ �@W=@h: ð2:11Þ
From (2.5) and (2.6), with h ¼ hðF;gÞ,
@U
@F
¼ @W
@F
þ @W
@h

@h
@F
þ g

@h
@F

;
@U
@g
¼ @W
@h

@h
@g
þ g

@h
@g
þ h: ð2:12Þ
Then from (2.11), in terms of internal energy, stress and temperature obey
P ¼ @U=@F; h ¼ @U=@g: ð2:13Þ
Applying the polar decomposition to the deformation gradient,
F ¼ RU ¼ VR; RRT ¼ 1; U ¼ UT; V ¼ VT: ð2:14Þ
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Let C ¼ FTF ¼ U2. Material logarithmic strain eðX; tÞ is defined as
e ¼ ln U ¼ 1
2

ln C; eIJ ¼ ðln UÞIJ ¼ eJI: ð2:15Þ
General definitions, identities, and means of calculation of the logarithm of a second-order tensor are given in Jog (2008); in
particular,
J ¼
ffiffiffiffiffiffiffiffiffiffiffi
det C
p

¼ exp ðtreÞ ¼ exp ðeKKÞ: ð2:16Þ
Free and internal energies (2.6) are now posited of the form
W ¼ �Wðe; hÞ; U ¼ �Uðe;gÞ: ð2:17Þ
These seem to have been rarely used for anisotropic solids, an exception being analysis of higher-order moduli in Dlu _zewski
(2000). Conjugate thermodynamic variables are
�S ¼ @ �W=@e ¼ @ �U=@e; g ¼ �@ �W=@h; h ¼ @ �U=@g: ð2:18Þ
From (2.2), the first of (2.13), (2.15), and the chain rule, Cauchy stress is
r ¼ J�1 @U
@F

FT ¼ J�1 @U
@C

:
@C
@F

� �
FT ¼ 2J�1F

@U
@C

FT ¼ J�1F
@ �U
@e

:
@ ln C
@C

 !
FT ¼ J�1Fð�S : MÞFT; ð2:19Þ
where W can be used alternatively in place of U; in index notation,
rij ¼ J�1FiK FjLMIJKL
�SIJ : ð2:20Þ
Fourth-order tensor M obeys (Jog, 2008)
M ¼ @ ln C
@C

¼
X3

i¼1

1
Ki

Pi�P T
i þ

X3

i¼1

X3

j¼1;j–i

ln Ki � ln Kj

Ki �Kj
Pi�PT

j : ð2:21Þ
Here Ki ¼ k2
i are the principal values of C; ðA � BÞIJKL ¼ AIK BJL, and
Pi ¼
Y3

j¼1;j–i

ðC �Kj1Þ=ðKi �KjÞ: ð2:22Þ
Noting that principal stretches ki are eigenvalues of U (and V),
e ¼
X3

i¼1

Pi ln ki ¼
1
2

X3

i¼1

Pi ln Ki: ð2:23Þ
Let cðe; hÞ denote specific heat per unit reference volume at constant deformation, where from (2.5) and (2.11):
c ¼ @U=@h ¼ hð@g=@hÞ ¼ �hð@2W=@h2Þ: ð2:24Þ
The rate of internal energy can be expanded as
_U ¼ ð@U=@FÞ : _F þ ð@U=@gÞ _g ¼ P : _F þ h½ð@g=@FÞ : _F þ ð@g=@hÞ _h�: ð2:25Þ
Substituting (2.24) and (2.25) into (2.7) leads to the temperature rate equation:
c _h ¼ hð@2W=@F@hÞ : _F �r0 � Q : ð2:26Þ
Defining thermal stress coefficients �bðe; hÞ as
�b ¼ @g=@e ¼ �@�S=@h ¼ �@2W=@e@h; ð2:27Þ
(2.26) can be written as
c _h ¼ �h�b : _e�r0 � Q ¼ �ch�C : _e�r0 � Q : ð2:28Þ
The second-order tensor of Grüneisen parameters is

�C ¼ �b=c: ð2:29Þ
The following Maxwell-type equalities can be derived using standard thermodynamic procedures like those in Thurston
(1974) and Clayton (2011a):
h�C ¼ ðh=cÞð@g=@eÞ ¼ �@�S=@g ¼ �@h=@e; ð2:30Þ
ðh=cSÞ�a ¼ ðh=cSÞð@e=@hÞ ¼ @e=@g ¼ �@h=@�S; ð2:31Þ
�a ¼ @e=@h ¼ @g=@�S: ð2:32Þ
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Thermal expansion coefficients are �aIJ . Specific heat at constant stress cS obeys
cS ¼ hð@g=@hÞj�S ¼ c þ h�a : �b: ð2:33Þ
Isothermal and isentropic second-order thermodynamic elastic coefficients are
�Ch
IJKL ¼

@�SKL

@eIJ

�����
h

¼ @2W
@eIJ@eKL

; �Cg
IJKL ¼

@�SKL

@eIJ

�����
g

¼ @2U
@eIJ@eKL

: ð2:34Þ
Thermal expansion and thermal stress coefficients are related by
�b ¼ ð@g=@�SÞjh : ð@�S=@eÞjh ¼ �a : �Ch; �bIJ ¼ �Ch
IJKL

�aKL: ð2:35Þ
Isentropic and isothermal coefficients are related, using Maxwell relations, by
�Cg ¼ ð@�S=@eÞjh þ ð@�S=@hjeÞ � ð@h=@eÞjh ¼ �Ch þ ðh=cÞ�b� �b; ð2:36Þ
or in indicial notation,
�C
g
IJKL ¼ �Ch

IJKL þ ðh=cÞ�bIJ
�bKL: ð2:37Þ
Application is focused on wave propagation problems, for which the internal energy potential proves more convenient
than the free energy potential. An unstrained reference state is defined by ðe; h;gÞ ¼ ð0; h0;g0Þ; temperature and entropy
changes from this reference state are Dh ¼ h� h0 and Dg ¼ g� g0. Greek subscripts denote Voigt notation for symmetric
indices, e.g., ð�ÞIJ ¼ ð�ÞJI $ ð�Þa :
11$ 1; 22$ 2; 33$ 3; 23 ¼ 32$ 4; 13 ¼ 31$ 5; 12 ¼ 21$ 6: ð2:38Þ
Following standard convention (Clayton, 2011a; Thurston, 1974), shear strain components contain a factor of two, but
stress and stiffness coefficients do not. For example, e6 ¼ 2e12; �S6 ¼ �S12, and �C66 ¼ �C1212. Internal energy per unit reference
volume is expressed as a series expansion about energy U0 from the reference state:
�U ¼ U0 þ Caea þ
1
2!

Cabeaeb þ
1
3!

Cabceaebec þ
1
4!

Cabcdeaebeced � h0 CaeaDgþ 1
2!

CabeaebDg� hðgÞ
� �

: ð2:39Þ
Letting ð�Þj0 ¼ ð�Þje¼0;g¼g0
, material coefficients in (2.39) are constants evaluated at the reference state, which is prescribed

stress free:
U0 ¼ �Uð0;g0Þ; Ca ¼ ð@ �U=@eaÞj0 ¼ 0; ð2:40Þ

Cab ¼
@2 �U
@ea@eb

 !�����
0

; Cabc ¼
@3 �U

@ea@eb@ec

 !�����
0

; ð2:41Þ

h0Ca ¼
h
c
@g
@ea

� �����
0
¼ � @2 �U

@g@ea

 !�����
0

;

h0Cab ¼ h
@ �Ca

@eb

 !�����
0

¼ � @3 �U
@g@ea@eb

 !�����
0

:

ð2:42Þ
With constant specific heat c0 ¼ ð@U=@hÞj0, to second order in entropy change,
h ¼ c0½expðDg=c0Þ � 1� � Dgþ 1
2!
ðDgÞ2=c0: ð2:43Þ
Thermoelastic properties are usually reported in the context of conventional E-based Lagrangian elasticity theory
(Clayton, 2011a; Thurston, 1974; Wallace, 1972), where
E ¼ 1
2
ðC � 1Þ ¼ 1

2
ðFTF � 1Þ; U ¼ �UðE;gÞ: ð2:44Þ
Let quantities with an overbar [i.e., �ð�Þ] refer to those measured with respect to E-based theory. It can be shown (Clayton,
2013; Dlu _zewski, 2000; Perrin & Delannoy-Coutris, 1983) that second-order isentropic elastic constants Cab and Grüneisen
constants Ca should be equal when the reference state is unstressed for E-based theory and e-based (i.e., logarithmic)
theory:
Cab ¼ �Cab; Ca ¼ �Ca: ð2:45Þ
This result is consistent with the requirement that �U � �U when strains are small. Third-order isentropic constants are
related, in full tensor notation, by Dlu _zewski (2000)
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CIJKLMN ¼ �CIJKLMN þ 2ðJIJKLPQCPQMN þ JKLMNPQ CPQIJ þ JMNIJPQ CPQKLÞ; ð2:46Þ

JIJKLMN ¼
1
8
ðdIKdJMdLN þ dIKdJNdLM þ dILdJMdKN þ dILdJNdKM þ dIMdJKdLN þ dIMdJLdKN þ dINdJKdLM þ dINdJLdKMÞ: ð2:47Þ
A standard assumption (Wallace, 1980) for weak shocks is q�C � constant, which yields (Clayton, 2013)
�CIJKL ¼
1
2
ð@ �CIJ=@EKL þ @ �CKL=@EIJÞj0 �

1
2
ðCIJdKL þ CKLdIJÞ; ð2:48Þ
Higher-order Grüneisen parameters Cab $ CIJKL are then related using the procedure outlined in Clayton (2013), giving
CIJKL ¼ �CIJKL þ
1
2
ðCIKdJL þ CJKdIL þ CILdJK þ CJLdIKÞ �

1
2
ðCIJdKL þ CKLdIJ þ CIKdJL þ CJKdIL þ CILdJK þ CJLdIKÞ: ð2:49Þ
2.2. Planar shock solution

A shock wave is represented as a propagating surface across which there may exist jump discontinuities in mass density,
particle velocity, strain, stress, entropy, temperature, and internal energy. Considered here are 1-D (i.e, normal, planar, or
longitudinal) shocks. Quantities associated with material ahead of the shock are denoted with superscript +, with material
behind superscript �. In the present analysis of Section 2.2, material ahead of the shock is at rest, undeformed, unstressed,
and at ambient reference temperature h0; these assumptions are removed later in Section 3.2. The jump in an arbitrary quan-
tity ð�Þ across the shock is written
sð�Þt ¼ ð�Þ� � ð�Þþ: ð2:50Þ
The shock moves at steady natural velocity D > 0 in the X ¼ X1 direction. The deformation gradient is
F� ¼ ½FiJ �� ¼
F 0 0
0 1 0
0 0 1

2
64

3
75 ¼

1þ n 0 0
0 1 0
0 0 1

2
64

3
75; Fþ ¼ 1: ð2:51Þ
Behind the shock, with x ¼ x�1 and u ¼ u�1 particle coordinate and displacement,
F ¼ @x
@X
¼ 1þ @u

@X
¼ 1þ n ¼ J� ¼ V�

V0
¼ q0

q�
; n ¼ @u=@X: ð2:52Þ
Attention is restricted to compressive shocks, for which 0 < F 6 1 and �1 < n 6 0. The only nonzero component of logarith-
mic strain e is
e ¼ e�11 ¼ ln F ¼ lnð1þ nÞ: ð2:53Þ
The ‘‘shock stress’’ or ‘‘shock pressure’’ is the longitudinal force per unit reference area (or equivalently, current area) behind
the shock, positive in compression:
P ¼ �P�11 ¼ �JðF�1
1k r1kÞ

� ¼ �r�11: ð2:54Þ
Let q ¼ q� and t ¼ t�1 be mass density and particle velocity in the shocked state. Conservation laws for mass, linear
momentum, and energy – i.e., particular forms of the Rankine–Hugoniot equations – are, respectively (Clayton, 2013;
McQueen et al., 1970; Thurston, 1974),
q0D ¼ qðD� tÞ () n ¼ �t=D; ð2:55Þ
P ¼ q0Dt ) q0D

2 ¼ �P=n () q0t
2 ¼ �Pn; ð2:56Þ

Pt ¼ D
1
2
q0t

2 þ sUt

� �
) sUt ¼ 1

2
q0t

2: ð2:57Þ
From (2.55), requiring 1 P J > 0 leads to constraints D > t P 0. In (2.57), the usual adiabatic assumption of null heat con-
duction has been used. Shock compression is neither isothermal nor isentropic; the entropy inequality is (Germain & Lee,
1973)
sg=q0t P 0 ) sgt P 0: ð2:58Þ
Subsequent derivations invoke internal energy U ¼ �Uðe;gÞ of (2.39). Derivatives of U with respect to strain depend only
on entropy changes Dg from the reference state and are independent of g0 ¼ gþ, and stress and temperature depend only on
derivatives of internal energy with respect to strain and entropy and are independent of U0. Therefore, let
U0 ¼ Uþ ¼ 0; g0 ¼ gþ ¼ 0 ) sUt ¼ U� ¼ U; sgt ¼ g� ¼ Dg ¼ g; ð2:59Þ
hþ ¼ ð@U=@gÞþ ¼ h0; h� ¼ ð@U=@gÞ� ¼ h ) sht ¼ Dh: ð2:60Þ
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Stress components thermodynamically conjugate to e are related to P via (2.19), (2.21), (2.22) and (2.54), which reduce here
to
P ¼ �J�1F1JF1N
�SKLMKLJN ¼ �F�S11M1111 ¼ ��S=ð1þ nÞ; ð2:61Þ

�S ¼ �S11 ¼ @ �U=@e11 ¼ @ �U=@e; ð2:62Þ
where all quantites are evaluated behind the shock.
Expanding n and ð1þ nÞ�1 in series to order five in logarithmic strain e ¼ e11,
n ¼ exp ðeÞ � 1 � eþ 1
2!

e2 þ 1
3!

e3 þ 1
4!

e4 þ 1
5!

e5; ð2:63Þ

1=ð1þ nÞ � 1� eþ 1
2!

e2 � 1
3!

e3 þ 1
4!

e4 � 1
5!

e5; ð2:64Þ

n=ð1þ nÞ � e� 1
2

e2 þ 1
6

e3 � 1
24

e4 þ 1
120

e5: ð2:65Þ
Using (2.56), (2.59), (2.61), and (2.65), balance (2.57) becomes, in terms of e,
U ¼ �1
2

Pn ¼ 1
2

�Sn=ð1þ nÞ � 1
2

�S e� 1
2

e2 þ 1
6

e3 � 1
24

e4 þ 1
120

e5
� �

: ð2:66Þ
Internal energy function (2.39) – using (2.43) and specialized to uniaxial strain with (2.53) and (2.59), to first order in en-
tropy – becomes
�Uðe;gÞ ¼ 1
2

C11e2 þ 1
6

C111e3 þ 1
24

C1111e4 � h0 C1egþ 1
2

C11e2g� g
� �

: ð2:67Þ
When �U is a linear function of entropy as in (2.67), then a solution for gðeÞ can be obtained analytically in closed form, as in
what follows. This form of internal energy is most valid for weak to moderate elastic shocks wherein g=c0 � 2, which will be
verified a posteriori in later examples. Conjugate thermodynamic stress is
�S ¼ @ �U=@e ¼ C11eþ 1
2

C111e2 þ 1
6

C1111e3 � h0ðC1 þ C11eÞg: ð2:68Þ
This is substituted into (2.66), which then, when considered with (2.67), provides two equations in three unknowns (U; e;g).
Writing gðeÞ as a polynomial with constant coefficients a0; a1; a2; . . .,
g ¼ a0 þ a1eþ a2e2 þ a3e3 þ a4e4 þ a5e5 þ � � � ð2:69Þ
Substituting (2.69) into (2.66) and (2.67), setting U ¼ �U, equating coefficients of like powers of e up to order five, and noting
g0 ¼ gð0Þ ¼ 0 from (2.59),
a0 ¼ a1 ¼ a2 ¼ 0; a3 ¼
1

12
h�1

0 ð�3C11 þ C111Þ; ð2:70Þ

a4 ¼
1

24
h�1

0 ½12C11 � 6C111 þ C1111 þ C1ð�3C11 þ C111Þ�; ð2:71Þ

a5 ¼
1

48
h�1

0 ½�C11 þ 2C111 � 2C1111 þ C1ð9C11 � 5C111 þ C1111Þ þ C2
1ð�3C11 þ C111Þ�: ð2:72Þ
Substitution of entropy gðeÞ, now known to fifth order in strain, into (2.68) gives
�SðeÞ ¼ C11eþ 1
2

C111e2 þ 1
6

C1111 � h0C1a3

� �
e3 � h0ðC1a4 þ C11a3Þe4 � h0ðC1a5 þ C11a4Þe5: ð2:73Þ
Use of this result for stress with (2.61) and Hugoniot equations (2.55)–(2.57) then gives shock pressure, internal energy, par-
ticle velocity, and shock velocity in terms of single variable e ¼ ln J ¼ ln V

V0
:

P ¼ ��S= exp ðeÞ; sUt ¼ 1
2

�S½1� exp ð�eÞ�; ð2:74Þ

t ¼ fð�S=q0Þ½1� exp ð�eÞ�g1=2
; ð2:75Þ

D ¼ fð�S=q0Þ½1� exp ð�eÞ�g1=2½1� exp ðeÞ�: ð2:76Þ
Finally, thermoelastic temperature rise due to entropy production is simply
h ¼ @ �U=@g ¼ h0 1� C1e� 1
2

C11e2
� �

: ð2:77Þ
In the limit of very low shock stress, shock velocity approaches the longitudinal linear elastic wave speed
C0 ¼ ðC11=q0Þ
1=2 ð2:78Þ
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and shock stress in the first of (2.74) approaches the isentrope
Pg ¼ � exp ð�eÞ C11eþ 1
2

C111e2 þ 1
6

C1111e3
� �

: ð2:79Þ
2.3. Results: elastic solution

Theory and analytical solutions derived in Section 2.2 are now applied to analyze shock compression behavior of single
crystals of three hard minerals: sapphire (a-Al2O3 or corundum), diamond (C), and quartz (a-SiO2). These materials are
considered because elastic deformations in excess of several percent volumetric compression can be achieved in uniaxial
compression prior to any inelastic deformation that could render the analysis of Section 2.2 unrealistic. These materials also
belong to the limited set of anisotropic crystals whose complete third-order, and in some cases fourth-order, elastic con-
stants have been reported.

Analytical solutions are studied for uniaxial shock compression involving internal energy function (2.39) incorporating
logarithmic strain e with elastic constants up to possibly fourth order. Certain results are also compared with those obtained
previously (Clayton, 2013) for Lagrangian (E-based) and Eulerian (D-based) nonlinear thermoelastic models. Sapphire and
quartz have trigonal (i.e., rhombohedral) symmetry and are analyzed for compression along two pure mode directions:
the a-axis (X-cut, ½�12�10�) and c-axis (Z-cut, ½0001�). The b-axis is not a pure mode direction in trigonal crystals; the plane
wave approximation used for analysis of Y-cut quartz in Clayton (2013), which omits possible transverse displacements,
is not repeated herein. Diamond is cubic and is analyzed for pure mode compression along a cube axis (X-cut, ½100�). Elastic
constants are interchanged as needed for consistency with notation of Section 2.2. For example, for c-axis (i.e., Z-cut) com-
pression, C11 is replaced by C33, C111 by C333, C1 by C3, etc.

Thermoelastic properties are listed in Table 1. Second-order elastic constants are reported from ultrasonic experiments
(McSkimin, Andreatch, & Glynn, 1972; McSkimin, Andreatch, & Thurston, 1965; Winey, Gupta, & Hare, 2001). Higher-order
constants are converted from reported Lagrangian values (Hankey & Schuele, 1970; Nielsen, 1986; Thurston et al., 1966) to
logarithmic values via (2.46) and (2.49). Complete sets of anisotropic second- and third-order constants are listed for later
Table 1
Thermoelastic single crystal properties (h0 ¼ 295 K; Cab... in GPa).

Property Sapphire Diamond Quartz

C11 498 1079 88
C12 163 124 7
C13 117 C12 12
C14 23 – �18
C33 502 C11 106
C44 147 578 58
C111 �792 174 315
C112 �764 �552 �331
C113 �729 C112 36
C114 �9 – �199
C123 �289 0 �294
C124 62 – �33
C133 �688 C112 �288
C134 154 – �16
C144 �162 124 �125
C155 �559 �843 �34
C222 �1532 C111 193
C333 �328 C111 �181
C344 �487 C155 65
C444 �16 – �249
C456 1

2 ðC155 � C144Þ �433 1
2 ðC155 � C144Þ

C1111 – – 104

C3333 – – 104

C1 1.29 0.81 0.74
C3 1.29 C1 0.58
C11 3.87 2.43 2.22
C12 1.29 0.81 0.74
C13 1.29 C12 0.66
C33 3.87 C11 1.74
B0 254 442 38
G0 166 538 48
B00 4.3 4.0 6.3

q0 ½g=cm3] 3.98 3.51 2.65
c0 [MPa/K] 3.10 1.73 1.95
PH=C11 0.05 0.08 0.10
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use in Section 3.3; in fact, only longitudinal constants are needed presently for analysis of the axial purely thermoelastic re-
sponse, as is clear from the solution derived in Section 2.2. Bulk modulus B0 and its pressure derivative B00 (Gieske & Barsch,
1968; McSkimin & Andreatch, 1972; McSkimin et al., 1965) are also listed; these enter the hydrostatic EOS described in the
Appendix A. For crystals with cubic symmetry,
B0 ¼
1
3
ðC11 þ 2C12Þ; ð2:80Þ
while for crystals with trigonal or hexagonal symmetry,
B0 ¼ ðC11 þ C12ÞC33 � 2C2
13

� 	
=½C11 þ C12 þ 2C33 � 4C13�: ð2:81Þ
Constant B00 is formally related to combinations of second- and third-order elastic constants (Guinan & Steinberg, 1974), but
is often measured directly or fit to high pressure data. Also listed for each crystal is the Voigt-average shear modulus G0, used
later in Section 3 for normalization of shear strength. For crystals with cubic symmetry,
G0 ¼
1
5
ðC11 � C12 þ 3C44Þ; ð2:82Þ
while for crystals with trigonal or hexagonal symmetry,
G0 ¼
1

15
½2C11 þ C33� � ½C12 þ 2C13� þ 3

1
2
ðC11 � C12Þ þ 2C44

� �
 �
: ð2:83Þ
As discussed later, fourth-order constants C1111 and C3333 for quartz are fit to shock velocity versus particle velocity data
(Fowles, 1967), but these are not needed for sapphire or diamond described with logarithmic elastic theory. Maximum
HEL stresses PH from shock experiments (Graham, 1972; Fowles, 1967; Lang & Gupta, 2010; Wackerle, 1962) are shown
for reference, normalized by second-order moduli (X-cut shown). The domain of validity of elastic analysis can be estimated
as V

V0
J C11�PH

C 11. In sapphire, the elastic domain for Z-cut quartz is about the same as that for X-cut (Graham, 1972; Graham &
Brooks, 1971); in quartz, the elastic domain for Z-cut is demarcated by PH

C 33 � 0:15 (Fowles, 1967; Wackerle, 1962).
Predicted shock velocity D versus particle velocity t is compared with experimental shock compression data of Graham

and Brooks (1971) in Fig. 1a for X- and Z-cut sapphire. Experimental data are obtained from flyer-plate and explosive loading
configurations; in the latter, two-wave structures arose (Graham & Brooks, 1971). Data considered here correspond only to
the elastic shock, with the secondary, slower ‘‘plastic’’ wave in which the HEL was exceeded not addressed here; the plastic
response will be modeled in Section 3. Velocities are normalized by wave speed (2.78). Predictions marked ‘‘3rd order’’ are
obtained using complete solutions and all material constants in Table 1. Predictions marked ‘‘2nd order’’ assume C111 ¼ 0.
Note that fourth-order constant C1111 is not needed for either orientation (Table 1). Considering scatter in the data, 3rd order
and 2nd order fits are adequate for each orientation, giving nearly linear D-t curves over the compression range for which
sapphire remains elastic ð V

V0
J 0:95Þ. Second order predictions for X- and Z-cut orientations are almost identical and corre-

spond to the broken line with lowest slope in Fig. 1(a). Hugoniot stress (i.e., P) normalized by C11 or C33 is shown in Fig. 1(b)
and (c), along with experimental data (Graham & Brooks, 1971). Also shown are 2nd order predictions made using analytical
solutions given in Clayton (2013) for Lagrangian E-based theory and Eulerian e-based theory. For each orientation, 2nd and
3rd order logarithmic model predictions provide close agreement with experiment. The other nonlinear elastic models
(Clayton, 2013) are comparatively inaccurate, with 2nd order Eulerian theory too stiff and 2nd order Lagrangian theory
too compliant.

Predictions of normalized shock velocity and Hugoniot stress in diamond are given in Fig. 2(a) and (b), respectively, com-
pared with experimental data of Lang and Gupta (2010). Fourth-order constant C1111 is not needed. From Fig. 2(a), differences
in 2nd and 3rd order predictions of logarithmic theory are small, with both providing close agreement with experimental
velocity data. Likewise in Fig. 2(b), differences in 2nd and 3rd order predictions of logarithmic theory are small, with both
providing close agreement with experimental stress data. The other 2nd order elastic models (Clayton, 2013) do not accu-
rately predict Hugoniot stress, with 2nd order Eulerian theory too stiff and 2nd order Lagrangian theory too compliant.

Predicted shock velocity D versus particle velocity t is compared with experimental shock compression data of Fowles
(1967) in Fig. 3a for X- and Z-cut quartz. Experimental data are obtained from plane-wave explosive loading (Fowles,
1967); data considered here correspond only to the first, elastic shock in each test. Fourth-order constant C1111 was fit to
the data in Fowles (1967). Predictions marked ‘‘3rd order’’ assume C1111 ¼ 0. Predictions of shock stress are compared with
those of 3rd order Lagrangian and Eulerian nonlinear elastic solutions (Clayton, 2013) in Fig. 3(b). For each orientation, 4th
order theories are required to most accurately match the experimental Hugoniot data; 2nd and 3rd order models are all too
compliant. However, 3rd order logarithmic theory more closely matches the data for Z-cut quartz than 3rd order Lagrangian
and Eulerian theories.

Predictions of the present logarithmic nonlinear thermoelasticity theory for temperature rise h (normalized by reference
temperature h0), entropy jump across the shock g (normalized by specific heat c0), and Hugoniot stress P (normalized by uni-
axial isentropic stress Pg) are listed in Table 2. Temperatures are computed from (2.77), entropy from (2.69), and isentropes
from (2.79), for each crystal with the full set of material properties given in Table 1. Predicted temperature rise is fairly small
for elastic shock loading, similar to results reported for Lagrangian and Eulerian theories in Clayton (2013). Entropy is posi-
tive in agreement with (2.58) and is of the same order of magnitude reported for Lagrangian and Eulerian theories in Clayton



Fig. 1. Analytical nonlinear elastic solutions and experimental data (Graham & Brooks, 1971) for sapphire: (a) shock velocity vs. particle velocity, X- and Z-
cut (b) shock stress vs. volume ratio, X-cut (c) shock stress vs. volume ratio, Z-cut.

Fig. 2. Analytical nonlinear elastic solutions and experimental data (Lang & Gupta, 2010) for diamond: (a) shock velocity vs. particle velocity, X-cut (b)
shock stress vs. volume ratio, X-cut.
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Fig. 3. Analytical nonlinear elastic solutions and experimental data (Fowles, 1967) for quartz: (a) shock velocity vs. particle velocity, X- and Z-cut (b) shock
stress vs. volume ratio, X-cut (c) shock stress vs. volume ratio, Z-cut.

Table 2
Thermodynamic predictions of nonlinear logarithmic theory.

Material Direction V=V0 h=h0 g=c0 P=Pg

Sapphire X 0.96 1.049 0.016 1.0008
0.92 1.094 0.145 1.0028
0.88 1.133 0.556 1.0056

Z 0.96 1.049 0.012 1.0006
0.92 1.094 0.110 1.0022
0.88 1.133 0.420 1.0045

Diamond X 0.96 1.031 0.036 1.0003
0.92 1.059 0.327 1.0011
0.88 1.083 1.248 1.0023

Quartz X 0.96 1.028 0.001 1.0002
0.92 1.054 0.030 1.0013
0.88 1.076 0.178 1.0041

Z 0.96 1.022 0.007 1.0005
0.92 1.042 0.086 1.0021
0.88 1.060 0.400 1.0046
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(2013). Recall from Section 2.2 that the present analytical solution assumes the contribution to internal energy from entropy
is linear in (2.67), most accurate for g� 2c0. From Table 2, such conditions hold for V

V0
P 0:92. Examination of stresses in

Table 2 shows that P
Pg < 1:01 in all cases, meaning an isentropic assumption for elastic shock compression is accurate for pre-

dicting axial stress up to the HEL in these crystals. Values listed in Table 2 are considered extrapolations when compression
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exceeds the HEL. Above the HEL, a nonlinear thermoelastic–plastic theory incorporating inelastic deformation mechanisms
and associated dissipation, as developed and applied next in Section 3, becomes necessary.

3. Anisotropic logarithmic thermoelastic–plastic theory

3.1. Continuum theory

Assuming again that x is differentiable, deformation gradient (2.1) is decomposed multiplicatively (Clayton, 2011a;
Teodosiu & Sidoroff, 1976) as
F ¼ r0 x ¼ FE FP; FiJ ¼ @J xi ¼ FE
iK FP

KJ: ð3:1Þ
Here FE and FP denote deformation ‘‘gradient’’ mappings associated with thermoelasticity and defects (e.g., dislocation slip,
twinning, or cleavage fracture), though neither generally anholonomic mapping (Clayton, 2012) need be compatible (i.e., a
true gradient of a vector field). Each is, however, presumed to have positive determinant: JE ¼ det FE > 0 and JP ¼ det FP > 0.
The usual stress definitions and local balance laws of continuum mechanics of Section 2.1 still apply [(2.2), (2.3), (2.4), (2.7),
and (2.8)], again here assuming no body forces or scalar heat sources.

Logarithmic thermoelastic strain is now defined as (no ‘‘E’’ superscript)
e ¼ ln UE ¼ 1
2

ln CE; ð3:2Þ
where the polar decomposition FE ¼ REUE, and CE ¼ FETFE. Analogously to (2.16), thermoelastic volume change obeys
JE ¼ exp ðtreÞ.

Let n represent a generic internal state variable associated with evolution of microstructure, for example, dislocation or
crack density. Here, n is assumed scalar, but generalization to higher-order tensors (Bammann, 1984) poses no theoretical
difficulties. Assuming uniform properties in the reference state, free and internal energy densities per unit initial volume
are of the form
W ¼ �Wðe; h; nÞ; U ¼ �Uðe;g; nÞ; ð3:3Þ
related as usual via U ¼ Wþ hg. Define thermodynamic conjugate forces as
�S ¼ @ �U=@e; f ¼ �@ �U=@n: ð3:4Þ
Using (2.7), (2.8), (3.3), and (3.4), and considering admissible thermomechanical processes, the following constitutive laws
can be derived consistently with the first and second laws of thermodynamics (see e.g., Clayton, 2011a):
r ¼ JE�1FEð�S : MÞFET; g ¼ �@ �W=@h; h ¼ @ �U=@g: ð3:5Þ
Here, M ¼ @ ln CE=@CE is computed analogously to (2.21). With LP the inelastic velocity gradient, entropy inequality (2.8) re-
duces to
Jr : ðFELPFE�1Þ þ fn� Q � r0h P 0; ðLP ¼ _FPFP�1Þ: ð3:6Þ
Defining specific heat at constant elastic strain as in (2.24), i.e., c ¼ @U=@h ¼ �h@2W=@h2, the balance of energy becomes
c _h ¼ Jr : ðFELPFE�1Þ þ hð@�S=@hÞ : _eþ ½f� hð@f=@hÞ� _n�r0 � Q : ð3:7Þ
Generic kinetic equations for inelasticity are of the state-dependent form
LP ¼ LPðFE;g; nÞ; _n ¼ _nðFE;g; fÞ: ð3:8Þ
Thermodynamic definitions and identities in (2.27) and 2.29, (2.30)–(2.36) and (2.37) still apply in the elastic–plastic case,
where now it is understood that e is the thermoelastic part of the total strain as in (3.2).

For anisotropic single crystal plasticity, contributions to inelastic deformation can often be attributed to deformation on
distinct planes with reference unit normal vector ma

0, in unit reference direction sa
0, where a ¼ 1;2; . . . ;n, with n the number

of possible deformation systems. Let _ca denote the scalar deformation rate on system a, which in general here can be due to
dislocation glide, deformation twinning, or cleavage fracture. The inelastic velocity gradient and inelastic dilatation rate
become
LP ¼
X

a

_casa
0 �ma

0;
_JP ¼ JP

X
a

_casa
0 �ma

0: ð3:9Þ
Lattice directors deform thermoelastically via
sa ¼ FEsa
0; ma ¼ FE�Tma

0: ð3:10Þ
Let ca ¼
R

_cadt denote the cumulative deformation on system a over a time increment in which deformation increases
monotonically. For dislocation glide, ca then represents isochoric plastic shear (sa

0 �ma
0 ¼ 0); for twinning, ca ¼ cTf a, with
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f a and cT the local volume fraction of twinned crystal and characteristic twinning shear (Clayton, 2009, 2010c) (twinning is
likewise isochoric with sa

0 �ma
0 ¼ 0). For cleavage (Clayton, 2010b), mode II/III fracture is isochoric (sa

0 �ma
0 ¼ 0), but mode I is

not (sa
0 �ma

0 ¼ 1 and ca P 0.) Dislocation glide is lattice preserving and does not affect thermoelastic properties such as elas-
tic moduli. Deformation twinning induces lattice rotation that can affect moduli and slip directors within twinned regions.
Fractures may induce degradation of thermoelastic properties.

Using (3.9) and (3.10), dissipation (3.6) and temperature rate (3.7) become
X
a

sa _ca þ fn� Q � r0h P 0; ðsa ¼ Jr : sa �maÞ; ð3:11Þ

c _h ¼
X

a
sa _ca þ hð@�S=@hÞ : _eþ ½f� hð@f=@hÞ� _n�r0 � Q : ð3:12Þ
The thermodynamic driving force for inelastic deformation on system a is resolved Kirchhoff stress sa. For rate dependent
inelasticity, a more specific form of the first of (3.8) is
_ca ¼ _caðsa; h; nÞ: ð3:13Þ
In the rate independent limit, often thought adequate for describing strong crystals such as ceramics whose shearing resis-
tance ga is an appreciable fraction of the theoretical strength (Graham & Brooks, 1971), (3.13) is replaced with
sa < gaðh; nÞ () _ca ¼ 0; sa ¼ gaðh; nÞ () j _cajP 0: ð3:14Þ
Rate independent theory also proves useful as a limiting case for describing the response in problems such as shock com-
pression wherein the true strain rate is unspecified or unknown (e.g., a shock represented mathematically as a moving sur-
face of discontinuity, as in Germain & Lee (1973), Perrin & Delannoy-Coutris (1983) and in later Section 3.2 of the present
work).

Application is again focused on wave propagation problems. Internal energy per unit reference volume is expressed as a
series expansion about energy U0 from the reference state as in (2.39)–(2.42) and (2.43):
�U ¼ U0 þ
1
2

Cabeaeb þ
1
6

Cabceaebec þ
1

24
Cabcdeaebeced þ h0Dg 1þ 1

2c0
Dg� Caea �

1
2

Cabeaeb

� �
þ 1

2
jG0n

2: ð3:15Þ
The final term represents stored energy of lattice defects for example, Regueiro, Bammann, Marin, and Garikipati (2002) and
Clayton (2005a), with j ¼ 1

G0

@2U
@n2 a dimensionless constant. Here, isentropic moduli are generally anisotropic but constant as

in Section 2.1; for simplicity, possible effects of twinning or damage on elastic moduli are omitted. Identities in (2.45)–(2.48)
and (2.49) still apply.

3.2. Planar shock solution

Consider a continuous and initially homogeneous slab of material through which a planar shock moves, in the x1-direc-
tion, with natural velocity D. As in Section 2.2, let superscripts + and � label quantities in the material ahead (i.e., upstream)
and behind (i.e., downstream) from the shock. Let sð�Þt ¼ ð�Þ� � ð�Þþ and hð�Þi ¼ 1

2 ½ð�Þ
� þ ð�Þþ� denote the jump and average of a

quantity across the shock. Let n be a unit normal vector to the planar shock, i.e., n ¼ @x=@x1. The only nonvanishing compo-
nent of particle velocity is t ¼ t � n. The Cauchy stress component normal to the shock front is r ¼ r : ðn� nÞ ¼ r11. The rel-
ative velocity of the material with respect to the shock is v ¼ t�D. Let u ¼ U=q0 denote internal energy per unit mass.
Appropriate forms of the Rankine–Hugoniot conditions for conservation of mass, momentum, and energy are (Germain &
Lee, 1973)
sqvt ¼ 0; ð3:16Þ
srt� qvsvt ¼ 0; ð3:17Þ

sqv uþ 1
2

v2
� �

� rvt ¼ 0: ð3:18Þ
The material need not be deformed uniaxially according to these conditions, but shock velocity and particle velocity must
both be rectilinear in the x1-direction so that only normal traction is discontinuous. Therefore, these equations can apply
for shock(s) passing through a pre-stressed material such as a plastic wave following an elastic precursor, making them more
general than 2.55, 2.56 and 2.57 of Section 2.2 that apply only for a single shock passing through an initially unstressed slab.
Adiabatic conditions have been assumed (Germain & Lee, 1973): Q ¼ 0, leading to entropy production requirement (2.58).
Using (3.16) and (3.17), energy conservation condition (3.18) can be rewritten as (Germain and Lee, 1973)
sut ¼ hris1=qt() sUt ¼ hrisJt: ð3:19Þ
Assume that the upstream state and shock velocity are known. The downstream state is defined by variables ðt�;q�;r�;u�Þ.
The Rankine–Hugoniot conditions provide three equations for determining this state; in order to fully obtain the down-
stream state, a fourth equation is supplied by the constitutive model, or another downstream variable must be known.
For example, in experiments particle velocity t� is often measured in addition to D.
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Considered in what follows are longitudinal elastic–plastic shocks corresponding to planar impact in pure mode direc-
tions in single crystals (i.e., directions parallel to an axis of threefold or greater symmetry). A sample of material subjected
to a step or ramp loading in normal stress along this direction, with no applied shear stress, develops a two-wave structure
consisting of a single longitudinal elastic wave (i.e., the elastic precursor), followed by a single longitudinal plastic wave if
the HEL is exceeded. Implicitly, overdriven shocks in which the plastic wave overtakes the elastic precursor are not consid-
ered. Total deformation is thus
Fþ ¼
Fþ 0 0
0 1 0
0 0 1

2
64

3
75 ¼ ½FE

iJ�
þ
; F� ¼

F� 0 0
0 1 0
0 0 1

2
64

3
75 ¼ ½FE

iK FP
KJ�
�
; ð3:20Þ
where hereafter superscripts + and � label quantities in front of and behind the plastic shock, i.e., at the HEL state of the
elastic precursor and the final inelastic state. Note that at the HEL state, Fþ ¼ ðFEÞþ, while behind the shock, F� ¼ ðFEFPÞ�.
For crystal orientations of lower symmetry, or if shear stress is applied in addition of longitudinal pressure, quasi-longitu-
dinal and multiple quasi-transverse elastic and plastic waves would appear (Johnson, 1972); such more complicated prob-
lems, for which (3.20) no longer applies, are not addressed herein.

For the highly symmetric orientations considered in detail for sapphire and diamond in Section 3.3, n inelastic shear sys-
tems are active simultaneously at shock stresses exceeding PH, all at the same rate _c ¼ _ca. For monotonic loading, integration
of (3.9) yields the plastic deformation, to order three in c:
FPðcÞ ¼ exp c
X

a
sa

0 �ma
0

 !
� 1þ c

X
a

sa
0 �ma

0 þ
c2

2

X
a

sa
0 �ma

0

 !2

þ c3

6

X
a

sa
0 �ma

0

 !3

; ð3:21Þ
with cumulative slip c to be determined in the analysis. This slip may result from dislocation glide, deformation twinning,
and/or sliding of micro-cracks. For uniaxial strain compression, mode I crack opening is omitted, and inelasticity is isochoric
(sa

0 �ma
0 ¼ 0 ) JP ¼ 1). From geometry of the problem, all n systems experience the same resolved shear stress s ¼ sa. Nor-

malizing (3.14) by shear modulus (2.82) or (2.83), the prescribed yield criterion in the plastically deforming regime is
s=G0 ¼ gðnÞ=G0 ¼ g0 � vn; n ¼ nc: ð3:22Þ
Here, g0 is dimensionless initial shear strength at the HEL, dependence of strength g ¼ ga on temperature is omitted, and
internal state variable n is the total slip on all n systems. Material constant v P 0 accounts for loss of shear resistance as
fracture ensues in conjunction with dislocation slip or twinning. For the brittle solids considered here, such strength loss
far exceeds any hardening that might arise from dislocation accumulation. In U ¼ U� of (3.15), it is assumed j ¼ 0 since prior
analysis (Clayton, 2009, 2010a, 2010c, 2011b) confirms that stored energy of lattice defects should be negligible relative to
plastic dissipation in strong ceramics under uniaxial compression, insignificantly affecting the predicted thermomechanical
response.

Crystalline quartz is known to have a large number of possible cleavage planes with very similar surface energy, and is
also prone to conchoidal fracture (Schultz, Jensen, & Bradt, 1994), i.e., curved failure surfaces not confined to any particular
plane, as observed in glass. Dislocation slip (Clayton, Chung, Grinfeld, & Nothwang, 2008) and Dauphné twinning (Barton &
Wenk, 2009) which may occur at high temperatures are omitted in the present description of quartz under shock compres-
sion. Therefore, inelastic deformation consisting of modeII/III cracks on numerous, possibly curved surfaces in quartz is mod-
eled as isochoric and isotropic:
FPðcÞ ¼
1� c 0 0

0 ð1� cÞ�1=2 0

0 0 ð1� cÞ�1=2

2
64

3
75: ð3:23Þ
Yield criterion (3.22) applies with n ¼ 1 and maximum shear stress s ¼ Jjr1 � r3j used in place of sa, where ðr1;r2;r3Þ are
principal Cauchy stress components.

Assume that HEL shock stress PH is known from experimental data. Then the upstream (HEL) state is fully determined by
the solution in Section 2.2, specifically (2.73)–(2.76) and (2.77). Specifically, e ¼ ln J ¼ ln F is decreased incrementally until
(2.74) reaches PH, at which point F ¼ Fþ and U ¼ Uþ. Given total deformation F� and slip variable c, thermoelastic deforma-
tion in behind the plastic shock is known from FE ¼ FðF�ÞFP�1ðcÞ. Internal energy, axial shock stress, and shear stress can
then be written in the form
U� ¼ U�ðF�; c;g�Þ; P� ¼ P�ðF�; c;g�Þ; s ¼ sðF�; c;g�Þ: ð3:24Þ
Let F� ¼ ð V
V0
Þ� be prescribed as the load parameter. Then energy balance (3.19) and yield criterion (3.22) comprise two cou-

pled algebraic equations that can be solved simultaneously for c and g�:
U�ðF�; c;g�Þ � Uþ ¼ 1
2
½P�ðF�; c;g�Þ þ PH�½Fþ � F��; ð3:25Þ

sðF�; c;g�Þ=G0 ¼ g0 � nc: ð3:26Þ
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To obtain Hugoniot stress versus volume curves reported later in Section 3.3, (3.26) and (3.25) are solved simultaneously for
c and g� as F� is decreased incrementally below V

V0
from the HEL state. With shock stress computed from the second of (3.24),

plastic shock velocity D and downstream particle velocity t� can be obtained from the Hugoniot equations for mass and
momentum conservation, (3.16) and (3.17), leading to (Molinari & Ravichandran, 2004)
Table 3
Inelasti

Mate

Sapp
Diam

Quar

F

D ¼ fðP� � PHÞ=½q0ðF
þ � F�Þ�g1=2

; t� ¼ tþ �DðF� � FþÞ: ð3:27Þ
The downstream state is now fully known. The above procedure signifies the first known (reported) analytical solution for
shock compression of anisotropic nonlinear thermoelastic–plastic single crystals, albeit restricted to planar shocks in highly
symmetric crystal orientations. Previous analytical solutions have been restricted to linear isentropic elasticity (Johnson,
1972; Johnson, 1974; Johnson et al., 1970) in anisotropic crystals or to finite strain isotropic elastoplasticity (Perrin &
Delannoy-Coutris, 1983).

3.3. Results: elastic–plastic solution

Elastic–plastic solutions of Section 3.2 are now applied to three single crystals: Z-cut sapphire, X-cut diamond, and X- and
Z-cut quartz. Inelastic deformation mechanisms contributing to cumulative shear c and inelastic properties n; g0, and v
(respectively the number of shear systems, initial dimensionless shear strength, and rate of strength reduction with cumu-
lative inelastic shear) are listed in Table 3. Also shown is the predicted value of cumulative shear cF at which the Hugoniot
stress approaches the hydrostatic pressure–volume curve of (A.2) given in the Appendix A (P ! p as c! cF). Particular en-
tries of Table 3 are discussed in detail for each material in conjunction with predicted Hugoniot stress-volume curves in what
follows next.

For Z-cut sapphire, preferred deformation mechanisms are rhombohedral (R-plane) twinning and R-plane fracture, which
occur equally on three f�1012gh�101 �1i shear systems (n ¼ 3). Previous analysis and experiments have confirmed that
R-plane twinning is preferred over all other glide and twinning mechanisms for this orientation (Clayton, 2009; Fuller,
Winey, & Gupta, 2013). Fracture is also most likely to occur on these planes, which have relatively low surface energy
(Schultz et al., 1994); dynamic R-plane cleavage has been confirmed by high speed photography in impact experiments
(McCauley, Strassburger, Patel, Paliwal, & Ramesh, 2013). Initial yield strength for twinning at the HEL is predicted as
g � 0:044G0 ¼ 7:3 GPa, near the upper bound of ranges 1 K g K 8 GPa quoted for R-twinning from previous analyses of
indentation (Tymiak & Gerberich, 2007) and uniaxial strain (Clayton, 2009). Noting that the characteristic twinning shear
for this twin system is cT ¼ 0:202 (Clayton, 2009), the maximum volume fraction of twinned material for each system is
cF
cT
� 0:3. Predicted Hugoniot stress is compared with experimental data (Graham & Brooks, 1971) in Fig. 4. The HEL
c deformation mechanisms and properties for single crystals.

rial Orientation Mechanism(s) n g0 v cF

hire Z f�1012gh�10 1 �1i twinning and cleavage 3 0.044 0.25 0.06
ond X f111gh�110i glide and cleavage 8 0.041 0.10 0.04

X f111gh�211i glide and cleavage 4 0.047 0.10 0.07
tz X conchoidal fracture 1 0.047 0.33 0.10

Z conchoidal fracture 1 0.087 0.50 –

ig. 4. Nonlinear elastic–plastic solution and experimental data (Graham & Brooks, 1971) for Z-cut sapphire: shock stress vs. volume ratio.



Fig. 5. Nonlinear elastic–plastic solutions and experimental data (Lang & Gupta, 2010; Kondo & Ahrens, 1983; Pavlovskii, 1971) for diamond: shock stress
vs. volume ratio.

Fig. 6. Nonlinear elastic–plastic solutions and experimental data (Fowles, 1967) for quartz: (a) shock stress vs. volume ratio, X-cut (b) shock stress vs.
volume ratio, Z-cut.
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corresponds to V
V0
� 0:96, at which point twinning initiates according to the model. In the plastic regime, Hugoniot stress col-

lapses to the hydrostat of (A.2) for V
V0

K 0:88. Since strength decreases (v > 0), fracture on R-planes accompanies twinning.
For X-cut diamond, two possible preferred deformation mechanisms are considered separately: (i) octahedral slip and

octahedral plane fracture which occur equally on eight f111gh�110i shear systems (n ¼ 8) and (ii) slip and octahedral plane
fracture which occur equally on four f111gh�211i shear systems (n ¼ 4). These two sets of systems have been suggested else-
where (Lang & Gupta, 2010 and references therein) for diamond, the first being reported more often. Fracture is most likely
to occur on f111g planes, which have low surface energy (Schultz et al., 1994) and low cleavage strength predicted from first
principles (Telling, Pickard, Payne, & Field, 2000). Initial yield strength for slip at the HEL is predicted as
g � 0:041G0 ¼ 22 GPa for h�110i systems and g � 0:047G0 ¼ 25 GPa for h�211i systems. These predictions are within ranges
19 K g K 30 GPa for h�110i and 23 K g K 35 GPa for h�211i estimated in Lang and Gupta (2010) using isentropic Lagrangian
elasticity. Using isotropic elasticity, a shear strength of 30 GPa has also been estimated from shock data (Kondo & Ahrens,
1983). Predicted Hugoniot stress is compared with experimental data (Kondo & Ahrens, 1983; Lang & Gupta, 2010;
Pavlovskii, 1971) in Fig. 5. While shock experiments were along [100] directions in Lang and Gupta (2010), Kondo and Ahrens
(1983), and Pavlovskii (1971), shock experiments in Kondo and Ahrens (1983) were not along pure mode directions, so mod-
el predictions are only approximately representative of the latter data. In the model, the representative HEL corresponds to
V

V0
� 0:94, towards the upper end of the range of values reported in Lang and Gupta (2010) and consistent with experiments

of Kondo and Ahrens (1983). In the plastic regime, Hugoniot stress collapses to the hydrostat of (A.2) for V
V0

K 0:82 for h�110i
systems or V

V0
K 0:80 for h�211i systems. Strength decreases at the same rate (v ¼ 0:10) for each model prediction, meaning

fracture on octahedral planes accompanies dislocation glide in each case. While both sets of slip systems enable accurate
representation of experimental data, the present calculations suggest that f111gh�110i slip should be more likely to occur



Fig. 7. Nonlinear elastic–plastic solutions: (a) cumulative slip or inelastic shear (b) temperature (c) entropy.
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than f111gh�211i slip since g0 is lower in the former. More slip accumulates on each individual system in the latter set (i.e.,
larger cF in Table 3 for h�211i) since there are fewer systems (n ¼ 4) for this set.

For X- and Z-cut quartz, conchoidal fracture or simultaneous cleavage of a large number of planes (Schultz et al., 1994) is
modeled using the isotropic representation of inelastic deformation in (3.23). Yield is permitted to be anisotropic through
prescription of different values of g0 and v depending on orientation. This approach enables successful fitting to Hugoniot
data (Fowles, 1967) in Fig. 6, but is not fully predictive since experimental data are insufficient to parameterize shear
strength for arbitrary crystal orientations. Initial yield strength for fracture at the HEL is computed as g � 0:047G0 ¼ 2:3 GPa
for X-cut quartz and g � 0:087G0 ¼ 4:2 GPa for Z-cut. In the model, the representative HEL corresponds to V

V0
� 0:94 for X-cut

and V
V0
� 0:92 for Z-cut. In the plastic regime, Hugoniot stress nears the hydrostat of (A.2) for V

V0
K 0:84 for X-cut quartz in

Fig. 6(a), wherein c � cF ¼ 0:1. In Fig. 6(b), data from Fowles (1967) remain above the logarithmic hydrostat to volumetric
compression in excess of 20%. For this reason, no value of cF is listed for Z-cut quartz in Table 3, and v! 0 for c > 0:092 is
imposed in calculations for this orientation.

Theoretical predictions of cumulative slip, temperature, and entropy are shown for all crystal types in respective Fig. 7(a)–(c).
All three variables are closely related since entropy and temperature increase in conjunction with energy dissipated by inelas-
tic deformation in the plastic regime. Temperature rise and entropy production are comparatively small in the elastic regime
[Fig. 7(b) and (c)] as noted already in Section 2.3 and Table 2. Predicted temperature rise and normalized entropy production
are largest for diamond because it has by far the largest absolute shear strength g and the smallest c0 (Table 1) of the three
crystals.

4. Conclusions

Finite strain thermoelastic and thermoelastic–plastic constitutive theories incorporating a logarithmic elastic strain
measure referred to material coordinates have been developed for anisotropic single crystals and applied towards shock



Fig. 8. Logarithmic EOS predictions and experimental data (Hart & Drickamer, 1965; Occelli et al., 2003; Kimizuka et al., 2007) for hydrostatic compression
of sapphire, diamond, and quartz.
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compression problems. New analytical solutions have been derived for planar elastic and plastic shocks along directions of
high symmetry. Predictions have been analyzed for sapphire, diamond, and quartz single crystals. In the elastic regime, supe-
rior accuracy of the proposed logarithmic theory over existing Lagrangian and Eulerian theories has been demonstrated for
sapphire, diamond, and Z-cut quartz. In the plastic regime, constitutive relations and necessary parameters have been devel-
oped and determined that describe experimental Hugoniot data, including the loss of shear strength for sapphire, diamond,
and X-cut quartz observed at shock stresses exceeding the HEL and the corresponding collapse of the Hugoniot stress to the
hydrostat. Accuracy of the latter described by a logarithmic pressure–volume EOS has been demonstrated. Precise values of
rhombohedral twinning resistance in sapphire and octahedral slip resistance in diamond have been calculated; these
compare favorably with coarse estimates given elsewhere. Model results for quartz suggest that fracture criteria are highly
orientation dependent despite the availability of numerous low-energy planes for potential cleavage and experimental evi-
dence of conchoidal fracture.

Appendix A. Hydrostatic compression

Considered here is the pressure–volume equation-of-state (EOS) derived from the logarithmic nonlinear elasticity theory
of Sections 2.1 and 3.1. Assume adiabatic conditions, isochoric plastic deformation (if any) such that J ¼ det F ¼ JE consists
only of thermoelastic volume change, and a hydrostatic stress state such that r ¼ �p1, with p the Cauchy pressure. Then
balance of energy (2.7) degenerates to
_U ¼ Jr : rt ¼ �Jpr � t ¼ �p_J: ðA:1Þ
For materials with less than cubic symmetry, deviatoric components of deformation rate may be nonzero, but only volume
changes contribute to internal energy. Pressure obeys, for logarithmic nonlinear elasticity, the following EOS (Poirier &
Tarantola, 1998):
p ¼ �ð@ �U=@JÞjDg¼0 ¼ �B0½ðln JÞ=J� 1� 1
2
ðB00 � 2Þ ln J

� �
; ðA:2Þ
where B0 is the isentropic bulk modulus and B00 the pressure derivative of the bulk modulus in the unstressed reference state.
For isothermal hydrostatic loading, free energy and isothermal constants replace internal energy and isentropic constants in
(A.2). For 2 6 B00 6 5 and 2

3 6 J 6 1, differences in pressure predicted by logarithmic EOS (A.2) and the second-order Birch–
Murnaghan (B–M) EOS associated with Eulerian elasticity (Clayton, 2013; Jeanloz, 1989) are insignificant, but at very high
compression – as occurring in the Earth’s interior for example – the logarithmic EOS becomes more realistic than the B–M
EOS (Poirier & Tarantola, 1998).

Predictions of (A.2) are compared with experimental hydrostatic compression data on sapphire (Hart & Drickamer, 1965),
diamond (Occelli, Loubeyre, & LeToullec, 2003), and quartz (Kimizuka, Ogata, Li, & Shibutani, 2007) in Fig. 8. Pressures are
limited to those under which phase transformations might occur. Close agreement with all data is evident for V

V0
J 0:88. Pre-

dictions are made using isentropic bulk moduli from (2.80) or (2.81) and pressure derivatives obtained from ultrasonic data
(Gieske & Barsch, 1968; McSkimin & Andreatch, 1972; McSkimin et al., 1965), all listed in Table 1, i.e., the EOS parameters
were obtained independently and are not fit directly to the high pressure data shown. The EOS predictions tend to exceed the
data for diamond and quartz for V

V0
K 0:88; the discrepancy is due in part to use of isentropic elastic constants (more appro-

priate for comparison with shock data in Section 3.3) rather than isothermal constants.
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